Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole.
نویسندگان
چکیده
Analytic potential energy surfaces (PESs) and state couplings of the ground and two lowest singlet excited states of thioanisole (C6H5SCH3) are constructed in a diabatic representation based on electronic structure calculations including dynamic correlation. They cover all 42 internal degrees of freedom and a wide range of geometries including the Franck-Condon region and the reaction valley along the breaking S-CH3 bond with the full ranges of the torsion angles. The parameters in the PESs and couplings are fitted to the results of smooth diabatic electronic structure calculations including dynamic electron correlation by the extended multi-configurational quasi-degenerate perturbation theory method for the adiabatic state energies followed by diabatization by the fourfold way. The fit is accomplished by the anchor points reactive potential method with two reactive coordinates and 40 nonreactive degrees of freedom, where the anchor-point force fields are obtained with a locally modified version of the QuickFF package. The PESs and couplings are suitable for study of the topography of the trilayer potential energy landscape and for electronically nonadiabatic molecular dynamics simulations of the photodissociation of the S-CH3 bond.
منابع مشابه
Microscopic Parameters in the Excited State of Toluene and Some of Its Haloderavatives
The Ultraviolet-visible (UV) spectra of toluene, ortho-bromo and para-bromo toluene in different solvents have been studied. The electric dipole moments and polarizabilities in the molecular excited electronic states were determined. It was found that the electric dipole moments for the excited states (µ*) and the ground states (µ) of these compounds are equal, and the change in dipole moment i...
متن کاملH2O photodissociation dynamics based on potential energy surfaces from density functional calculations
We investigate the usefulness of density functional theory ~DFT! for calculating excited state potential energy surfaces. In the DFT calculations, the generalized gradient approximation ~GGA! is used. As a test case, the photodissociation of H2O through the first excited à B1 state was considered. Two-dimensional potential energy surfaces were obtained for both the X̃ A1 ground state and the fir...
متن کاملExperimental probing of conical intersection dynamics in the photodissociation of thioanisole.
Chemical reactions that occur in the ground electronic state are described well by invoking the Born-Oppenheimer approximation, which allows their development to be rationalized by nuclear rearrangements that smoothly traverse an adiabatic potential energy surface. The situation is different, however, for reactions in electronically excited states, where non-adiabatic transitions occur between ...
متن کاملFull-dimensional potentials and state couplings and multidimensional tunneling calculations for the photodissociation of phenol
We present an improved version of the anchor points reactive potential (APRP) method for potential energy surfaces; the improvement for the surfaces themselves consists of using a set of internal coordinates with better global behavior, and we also extend the method to fit the surface couplings. We use the newmethod to produce a 3 3 matrix of diabatic potential energy surfaces and couplings for...
متن کاملEnergy partitioning following photodissociation of methyl iodide in the A band: A velocity mapping study
Translational and internal energy partitioning in the methyl and iodine fragments formed from photodissociation of methyl iodide in the A-band region is measured using velocity mapping. State-selective detection combined with the very good image quality afforded by the two-dimensional imaging technique allow a detailed analysis of the kinetic energy and angular distributions. Product vibrationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 146 6 شماره
صفحات -
تاریخ انتشار 2017